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Abstract
The Schwinger-boson mean-field theory is used to study the three-dimensional
antiferromagnetic (AF) ordering and excitations in the compounds L2BaNiO5,
a large family of quasi-one-dimensional mixed-spin antiferromagnets. To
investigate the magnetic properties of these compounds, we introduce a three-
dimensional mixed-spin AF Heisenberg model based on experimental results
for the crystal structure of L2BaNiO5. This model can explain the experimental
finding of coexistence of the Haldane gap and AF long-range order below the
Néel temperature. Properties such as the low-lying excitations, magnetizations
of Ni and rare-earth ions, Néel temperatures of different compounds, and the
behaviour of the Haldane gap below the Néel temperature are investigated
within this model, and the results are in good agreement with neutron scattering
experiments.

1. Introduction

The existence of a Haldane gap [1] in the magnetic excitation spectrum has maintained
the integer-spin one-dimensional (1D) Heisenberg antiferromagnet as one of the most
interesting subjects in condensed matter physics over the past 20 years. The integer-spin
Heisenberg antiferromagnetic (AF) chain should have a singlet ground state, exponentially
decaying correlations, and a quantum gap; these features have been confirmed by numerous
theoretical [2–6] and experimental [7–10] studies. Kennedy and Tasaki have proved that the
appearance of a Haldane gap in the spin-1 AF chain corresponds to the breaking of a hidden
Z2 × Z2 symmetry [11]. The recent finding of coexistence of the Haldane gap and AF long-
range order (AF LRO) in the rare-earth compounds L2BaNiO5 with L = Y, Nd, Sm, Eu, Gd,
Tb, Dy, Ho, Er, and Tm [10, 12–16] has offered an opportunity to investigate the effect of a
staggered field on the Haldane chain. Polarized and unpolarized inelastic neutron scattering
experiments on L2BaNiO5 [14, 16] indicate, on the one hand, that there are AF interactions
between spins of rare-earth and Ni ions, which lead to the three-dimensional (3D) AF LRO
with the Néel temperature (TN ) ranging from 20 to 70 K [12, 13]; on the other hand, these

0953-8984/02/368563+09$30.00 © 2002 IOP Publishing Ltd Printed in the UK 8563

stacks.iop.org/JPhysCM/14/8563


8564 Y Song and S Feng

compounds are also characterized by the presence of NiO6 octahedron chains along the a-axis.
As was anticipated, above the Néel temperature, an energy gap has been found in the excitation
propagating along the Ni chain. Also, the Haldane gap is discovered to persist in the 3D AF
phase and increase with decreasing temperature below TN [14–16].

Recently, several theoretical works have focused on the quasi-1D Haldane system
L2BaNiO5 [17–19]. To describe the coexistence of the Haldane gap and AF LRO, the nonlinear
sigma model for the scenario in a static staggered magnetic field has been introduced by
Maslov and Zheludev [17]. This system has been studied numerically within the density
matrix renormalization group method by adopting the model of a 1D spin-1 Heisenberg chain
in a static field [18]. In the above studies, the reason for introducing the static staggered field
is based on the assumption that there are 3D directly AF exchange interactions between the
spins of rare-earth ions, which lead to the AF LRO below TN . However, it has been pointed
out on the basis of some experiments [12–14] that spins of Ni ions also play an important role
in forming AF LRO, and the two-dimensional mixed-spin Heisenberg model with s1 = 1 and
s2 = 1/2 chains staked alternatively has also been adopted for this system [19].

In view of the experimental finding for the crystal structure, we introduce a more suitable
3D mixed-spin AF Heisenberg model to describe the magnetic properties of the compounds
L2BaNiO5. In this model we define s1 = 1 for the spins of Ni ions, and investigate different
members of this family by changing the spin value s2 of the rare-earth ions correspondingly.
We use the Schwinger-boson mean-field (SBMF) [20–22] theory to study this 3D mixed-
spin model. The SBMF theory has been successful in the study of integer-spin Heisenberg
chains [20, 21], and has also been extended to cases with magnetic ordering by identifying
the magnetization with the Bose condensation of the Schwinger bosons [20–22]. Within this
model, we can explain the experimental finding of the coexistence of the Haldane gap and
AF LRO. The interactions between spins of Ni and rare-earth ions are proved to be very
important in forming the AF LRO. Properties such as the magnetization, Haldane gap, and
Néel temperatures are also discussed for cases with different s2. Comparing our results with
neutron scattering experiments, we find that our findings could explain some experimental
findings.

The paper is organized as follows. In section 2 we introduce the 3D mixed-spin Heisenberg
model and SBMF theory. Our results on the magnetic properties of L2BaNiO5 compounds are
presented in section 3. Finally, we conclude our findings in section 4.

2. The mixed-spin Heisenberg model and Schwinger-boson mean-field theory

The crystal structures of L2BaNiO5 compounds have been investigated extensively by means
of neutron scattering experiments [12–14]. They belong to the orthorhombic system, having
approximate cell parameters around a = 3.8 Å, b = 5.8 Å, and c = 11.3 Å. In all members of
this compound group, as figure 1(b) shows, strings of distorted NiO6 octahedra share the apical
oxygen and form Haldane chains along the a-axis. The intrachain Ni–O–Ni AF superexchange
coupling is about 200–300 K [12–14], which is the strongest magnetic interaction in the
compound. However, in the bc-plane, as figure 1(a) shows, there is one oxygen between the
Ni and rare-earth (L) ions, and thus the Ni–O–L interactions establish links between individual
Ni chains. This coupling is of the order of tens of kelvins (10–30 K). Figure 1(a) also shows that
there are L–O–L AF interactions between rare-earth ions, which are of the order of 1 K or less.

On the basis of the experimental finding of the crystal structure of the compounds
L2BaNiO5, we introduce a 3D mixed-spin AF Heisenberg model expressed by the Hamiltonian

H = J1

∑
i,ηa

S1,i S1,i+ηa + J2

∑
i,ηb ,ηc

S1,i S2,i+ηb +ηc + J3

∑
j

S2, j S2, j+ĉ0 , (1)
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Figure 1. (a) Structural relation between Ni and rare-earth sites in the bc-plane, and (b) Ni and
apical oxygen form the Haldane chain along the a-axis.

where S1 and S2 are the spin operators of the Ni and rare-earth ions respectively. ηb and ηc

denote summations over nearest-neighbour (NN) bonds in the bc-plane, and ηa that over the
NN bonds along the a-axis. The AF superexchange couplings along the Ni chain, between L
and Ni ions, and among the rare-earth L ions are represented as J1, J2, and J3 respectively, as
figure 1(a) shows.

The Schwinger-boson theory introduces Si = 1
2 b+

iασα,βbiβ(α (or β) = ↑,↓) [20, 21],
and the spin degrees of freedom are mapped to the boson degrees of freedom. Meanwhile,
the original spin Hilbert space corresponds to a boson Hilbert subspace in which b+

i↑bi↑ +
b+

i↓bi↓ = 2si . These constraints on the boson Hilbert space are imposed in the Hamiltonian (1)
by introducing two kinds of Lagrangian multiplier, λ1(i) and λ2( j). In addition, we define the
bond operators as Qa(i, ηa) = b1i↑b1(i+ηa)↓ − b1i↓b1(i+ηa)↑, Qh(i, ηb, ηc) = b1i↑b2(i+ηb+ηc)↓ −
b1i↓b2(i+ηb+ηc)↑, and Qc( j, ĉ0) = b2 j↑b2( j+ĉ0)↓ − b2 j↓b2( j+ĉ0)↑. The Hamiltonian (1) can be
rewritten as

H = − 1
2 J1

∑
i,ηa

{Q+
a(i, ηa)Qa(i, ηa) − 2s2

1 } − 1
2 J3

∑
j

{Q+
c ( j, ĉ0)Qc( j, ĉ0) − 2s2

2 }

− 1
2 J2

∑
i,ηb,ηc

{Q+
h(i, ηb, ηc)Qh(i, ηb, ηc) − 2s1s2}

+
∑

i

λ1(i){b+
1i↑b1i↑ + b+

1i↓b1i↓ − 2s1}

+
∑

j

λ2( j){b+
2 j↑b2 j↑ + b+

2 j↓b2 j↓ − 2s2}. (2)

Next, we make a Hartree–Fock decomposition of equation (2) by taking the average values
of the bond operators and Lagrange multipliers to be uniform and static: 〈Qa(i, ηa)〉 = Qa ,
〈Qh(i, ηb, ηc)〉 = Qh , 〈Qc( j, ĉ0)〉 = Qc, 〈λ1(i)〉 = λ1, and 〈λ2( j)〉 = λ2. Under Fourier
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transformation, we obtain the following mean-field Hamiltonian in the momentum space:

H M F =
∑

k

2Zk{b1k↑b1(−k)↓ − b1k↓b1(−k)↑ + h.c.}

+
∑

k

4Dk{b1k↑b2(−k)↓ − b1k↓b2(−k)↑ + h.c.}

+
∑

k

2χk{b2k↑b2(−k)↓ − b2k↓b2(−k)↑ + h.c.}

+
∑
kσ

{4λ1b+
1kσ b1kσ + 8λ2b+

2kσ b2kσ } + 2N{J1 Q2
a + 4J2 Q2

h

+ J3 Q2
c − 4λ1s1 + 2J1s2

1 + 8J2s1s2 + 2J3s2
2 − 8λ2s2}, (3)

where Zk = J1 Qa cos(kza0), χk = J3 Qc cos(kxc0), and Dk = 2J2 Qh cos(kxc0) cos(kyb0).
Diagonalizing H M F in equation (3) by the Bogoliubov transformation, we obtain

H M F = 2
∑

k

{E+
k

(
α+

1kσ α1kσ + α2kσ α+
2kσ

)
+ E−

k (β+
1kσ β1kσ + β2kσ β+

2kσ )} + E0 (4)

with

E±
k =

√
A ± √

A2 − 4B

2

A = λ2
1 + 4λ2

2 − (Z 2
k + χ2

k + 2D2
k )

B = 4λ1λ2(λ1λ2 − D2
k ) − χ2

k λ2
1 − 4Z 2

kλ
2
2 + (χk Zk − D2

k )
2

E0 = 2N{J1 Q2
a + 4J2 Q2

h + J3 Q2
c + 2J1s2

1 + 8J2s1s2 + 2J3s2
2 }

− 8Nλ1(s1 + 1
2 ) − 16Nλ2(s2 + 1

2 ).

(5)

Furthermore, the mean-field free energy is given by

F M F = 8

β

∑
k

ln

{(
2 sinh

(
β E+

k

2

))
+ ln

(
2 sinh

(
β E−

k

2

))}
+ E0. (6)

The mean-field equations are obtained by differentiating F M F with respect to the
parameters Qa , Qh , Qc, λ1 and λ2:

∂ F M F

∂ Qa
= ∂ F M F

∂ Qh
= ∂ F M F

∂ Qc
= ∂ F M F

∂λ1
= ∂ F M F

∂λ2
= 0. (7)

Thus we obtain five self-consistent equations to determine the average values of the bond
operators and Lagrange multipliers.

3. Mean-field solutions

In this section, we present the solutions of the SBMF theory. The experimental finding of
the coexistence of the Haldane gap and AF LRO below TN is obtained in our study. As
equation (5) shows, there are two branches of the magnetic excitations, E+

k and E−
k , which

have quite different behaviours below TN . On the one hand, the magnetic excitation E+
k has

an energy gap over the whole temperature region and below TN this energy gap increases
with decreasing temperature. On the other hand, within the temperature region from zero to
TN , E−

k remains gapless and has its minimal value E−
k = 0 at k = 0. Under this condition,

the Schwinger-boson condensation occurs and leads to the AF LRO in this system. In our
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Figure 2. The temperature dependence of the ordered moment on the Ni (a) and Nd (b) sites in a
Nd2BaNiO5 sample taken from [14] (open circles); the solid curves show fits to the experimental
finding, from our numerical results, of the case with s = 3/2. Magnetizations M1/s1 (c) and M2/s2
(d) are shown as functions of temperature below TN for the cases of s2 = 1/2, 1, 3/2, 2, 5/2 and 3.

calculation, we introduce the Schwinger-boson condensation into the self-consistent mean-
field equations, and obtain the temperature dependence of the magnetizations of Ni (M1) and
rare-earth (M2) ions below TN respectively. The magnetizations M1 and M2 are expressed as

M1 = 〈SZ
1 〉 = 1

2N

∑
i

〈b+
1i↑b1i↑ − b+

1i↓b1i↓〉

M2 = 〈SZ
2 〉 = 1

2N

∑
j

〈b+
2 j↑b2 j↑ − b+

2 j↓b2 j↓〉.
(8)

We choose the AF superexchange interactions as J1 = J , J2 = 0.1J and J3 = 0.01J (J > 0)
according to the experimental studies of the magnetic properties of the compounds L2BaNiO5

[12–14]. The AF interactions between Ni ions have been estimated as 2J = 200–300 K from
the neutron scattering experiments [12, 14]. For simplicity and clarity, in our calculations we
choose J = 100 K.

The neutron scattering experimental results on Nd2BaNiO5 obtained by Yokoo et al [15]
are shown in figures 2(a) and (b) (open circles). The solid curves in figures 2(a) and (b) show
fits to the above experimental results of our numerical calculations for the case with s2 = 3/2.
The temperature dependences of magnetizations M1/s1 and M2/s2 for the cases of s2 = 1/2, 1,
3/2, 2, 5/2 and 3 are shown in figures 2(c) and (d) respectively. As temperature increases, the
thermal fluctuation in the system becomes stronger, and the magnetizations decrease rapidly
and drop to zero at the Néel temperatures. Therefore, we could also determine the Néel
temperatures TN for all members of the L2BaNiO5 family through our calculation.
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Figure 3. Néel temperatures of the compounds L2BaNiO5 for cases with different spin values
s2. The circles represent the theoretical results and the triangles are experimental findings for the
compounds Nd2BaNiO5, Pr2BaNiO5 and Ho2BaNiO5 taken from [11–13].

In figure 3, we plot the Néel temperature TN as a function of spin value s2 (filled circles
and dotted curve). For comparison, the Néel temperatures of the compounds Ho2BaNiO5

(TN = 53 K) [12], Nd2BaNiO5 (TN = 48 K) [13] and Pr2BaNiO5 (TN = 24 K) [14] obtained
by neutron scattering experiments are also shown in figure 3 (filled triangles). Our theoretical
results roughly agree with the experimental results. We also find that the Néel temperature
TN increases monotonically with increasing of s2. When the spin value of the rare-earth
ions s2 is equal to 1/2 and 3, we get that the minimum and maximum Néel temperatures are
T min

N ≈ 0.207J and T max
N ≈ 0.872J respectively. Our result for the Néel temperature region

is approximately from 20.7 to 87.2 K when J = 100 K, which is in good agreement with the
experimental estimate of the TN -region: 20–70 K [12, 13].

The two branches of the magnetic excitation, E+
k and E−

k , represent the spin fluctuations
along the a-axis and within the bc-plane respectively. In the exactly one-dimensional case
(J2 = J3 = 0), the excitation E−

k vanishes and the energy gap of E+
k is just the Haldane gap

of the AF Heisenberg chain, which is closely related to the breaking of a hidden Z2 × Z2

symmetry [11]. We obtain that the coexistence of the Haldane gap and AF LRO below TN

is a common feature of all compounds L2BaNiO5 except Y2BaNiO5. The neutron scattering
experiments have found that, below the Néel temperature, the Haldane gap increases as the
temperature decreases [14–16]. The temperature dependences of the Haldane gap � for the
cases of s2 = 1/2, 1, 3/2, 2, 5/2 and 3 are also investigated by the SBMF theory and
the behaviours are shown in figure 4(a). The temperature dependence of the energy gap �

obtained by our calculation is found to agree with the experimental finding.
Our calculation also implies that the effect of the staggered magnetization on the magnetic

excitation is to widen the Haldane gap. Below TN , the effective internal magnetic field Hef f

imposed on the Haldane chain is assumed approximately as the magnetization M1 of Ni ions.
This field is found to increase with decreasing temperature and increasing spin value s2 because
of the thermal fluctuation being weakened and the AF ordering being enhanced. In figure 4(b),
we plot the energy gap � of zero temperature as a function of Hef f , and we find that Hef f has
strong effect of widening the Haldane gap.
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Figure 4. The temperature dependence of the Haldane gap for the cases of s2 = 1/2, 1, 3/2, 2,
5/2 and 3 below the Néel temperatures; (b) the Haldane gap as a function of the effective internal
magnetic field Hef f .
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Figure 5. Néel temperature as a function of AF coupling J2 between Ni2+ and L3+ ions for the
case s2 = 1/2, J1 = J , J3 = 0.01J .

In addition, on the basis of the 3D mixed-spin model, we obtain that AF LRO below
the Néel temperature is not constructed only by the rare-earth ions. Our results support the
suggestion that Ni ions also play an important role in forming the AF LRO. We plot in figure 5
the Néel temperature as a function of the AF coupling J2 in the cases with s2 = 1/2, J1 = J
and J3 = 0.01J . In the compounds L2BaNiO5, the effective interactions between individual
Ni chains rely on the AF coupling J2 between Ni2+ and rare-earth L3+. We obtain that the
Néel temperature rises rapidly with increase of J2 as shown in figure 5, so the coupling J2

is important in forming the AF LRO. Also, as J2 = 0, there are no interactions between Ni
chains and thus the Néel temperature drops to zero. The Haldane excitation energies E+

k in
the 3D and 1D cases are shown in figures 6(a) and (b) respectively. Here we choose s2 = 1/2,
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Figure 6. The branch of the Haldane excitation E+
k as a function of kz in (a) 3D with s2 = 1/2,

J1 = J , J3 = 0.01J and (b) the pure 1D case. The solid curves show results for temperature
T = 0.1J and the dotted curves present results for T = 0.4J .

J1 = J , J2 = 0.01J , J3 = 0.01J and kx = ky = 0 for the 3D case and obtain that the
corresponding Néel temperature is TN = 0.206J . To compare the behaviours of magnetic
excitations below and above the Néel temperature, we study two conditions: T = 0.1 (solid
curves) and T = 0.4J (dotted curves) for both 1D and 3D cases. In the 3D case, we find,
in figure 6(a), that the energy gap below the Néel temperature is obviously bigger than that
above the Néel temperature, which is opposite to the behaviour for the pure 1D case (shown in
figure 6(b)). In addition, we obtain that the thermal fluctuation has a strong effect of destroying
the 3D spin correlations in the compounds; as a result, the behaviour in the 3D case is the same
as that in the 1D case when the temperature is above the Néel temperature.

4. Summary

In conclusion, we have introduced a 3D mixed-spin AF Heisenberg model based on the
experimental results for the crystal magnetic structure for the compounds L2BaNiO5, and
studied this model with the SBMF theory. The experimental finding of coexistence of the
Haldane gap and AF LRO below TN has been deduced by our calculation. Properties such
as the low-lying excitations, magnetizations of Ni and rare-earth ions, Néel temperatures of
different members of this family and behaviour of the Haldane gap below TN have also been
investigated within this model.

We have obtained two branches of the magnetic excitations E+
k and E−

k ; E+
k has an energy

gap and E−
k is gapless below TN . The theoretical result is that the Néel temperature region is

approximately from 20.7 to 87.2 K, which is in good agreement with the experimental estimate
of the region: 20–70 K. We have also found that the Haldane gap increases with decreasing
temperature, and the effect of the magnetization is to widen the Haldane gap. Our results are
in good agreement with the experimental findings. Our findings also support the suggestion
that the AF LRO below TN is not constructed just by the rare-earth ions; Ni ions also play an
important role in forming the AF LRO.
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